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Abstract
We study a Markovian single-server ticket queue where, upon arrival, each customer
can draw a number from a take-a-number machine, while the number of the customer
currently being served is displayed on a panel. The difference between the above
two numbers is called the “virtual queue length.” We consider a nonhomogeneous
population of customers comprised of two types: “regular” and “strategic.” Upon
arrival, a regular customer, regardless of the value of the virtual queue length, draws
a number from the machine, joins the queue and waits in the system until being
served. A strategic customer, depending on the virtual queue length, may either join,
leave, or go to “orbit” for a random duration. If, upon return from orbit, a strategic
customer realizes that s/he missed her/his turn, s/he balks. Otherwise, s/he joins the
queue and waits to be served. We analyze this intricate stochastic system, calculate its
steady-state probabilities, derive the sojourn time’s Laplace–Stieltjes transform of a
regular and of a strategic customer and calculate the system’s performance measures.
Finally, an economic analysis is performed to determine the optimal mean orbiting
time of strategic customers for two types of objective functions. Numerical examples
are presented.
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1 Introduction

Queueing problems, known as Ticket Queues, are considered highly intricate for ana-
lytic solution. A recent extensive survey of queueing publications [8]mentions a single
paper on ticket queues [19]. That paper considers an infinite capacityMarkovian queue
that serves a homogeneous population, where, upon arrival, each customer is issued
a ticket number, while the ticket number of the last customer currently being served
is displayed on a panel. Based on this information, customers have to decide whether
to join or to balk, while reneging after joining is not considered an option. If the dif-
ference between the above two numbers, called the virtual queue length, exceeds a
certain pre-specified common patience-queue level, the customer balks never to return.
This threshold-type decision is made with incomplete information on the actual queue
length, as the virtual queue length includes, in addition to the actual queue length, cus-
tomers that have balked upon arrival. In a recent paper, Kerner et al. [10] show that
no threshold strategy can be a Nash equilibrium strategy for the model analyzed in
[19]. Furthermore, they show that if all customers adopt any threshold strategy, the
best response of any individual is to use a double-threshold strategy of the following
type: join if and only if the virtual queue length is either (i) smaller than one thresh-
old, or (ii) larger than a second threshold. Jennings and Pender [9] compare between
standard queues and ticket queues of the type described above and prove heavy traffic
limit theorems for both ticket and standard queueing processes, discovering that if the
customer population is relatively patient, then the two processes converge to the same
limit. Further, the latter paper heuristically estimates several performance metrics of
ticket queues and tests them by using simulation.

Comparisons of perceptions of, and behavior in ticket queues and physical queues
(stand-in-line systems) are discussed in Kuzu [11]. The paper conducts a series of sur-
veys to understand customer preferences and patience in such systems. The paper also
investigates whether the assumptions used in analytical queuing models for customers
abandonment behavior are realistic. The results of the paper indicate that customers
generally prefer ticket queues over physical queues and are more patient in ticket
queues. Ding [2] develops an approximation procedure that calculates the percentage
of reneging customers in single-server ticket queues and illustrates numerically that
the percentage of reneging customers can be significantly reduced by offering cus-
tomers extra information on the actual queue length. Many other papers on strategic
queues assume that the balking/waiting decision rule used by customers is based on a
complete information of the actual queue length; see, for example, [1, 8, 16, 21].

A recent paper by Kuzu et al. [12] takes a holistic empirical approach to examine
how realistic customer behaviors drive ticket queue performance. Their empirical
results reveal that customers are capable of adapting their patience to the waiting
context and that they dynamically improve their forecast and decision making over
time. The conclusion is that the inefficiency of ticket queues is much smaller than that
predicted in the literature.
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In our paper, we propose a model where customers in ticket queues adapt their
behavior strategically to their forecast of the waiting time. More specifically, we
assume that a fraction of the customers’ population acts strategically by quitting
the queue temporarily in order to get an extra reward by using the waiting time for
completing some other duties (unrelated to the service offered by the system). Such
customers take the risk of missing their turn when returning to the system. If the type
of service provided by the system is not a onetime service, the strategic customers are
expected to improve their forecast over the waiting time duration, in order tomaximize
their total expected reward, as suggested by Kuzu et al. [12].

In this paper, we follow the assumption of the above-mentioned papers [19] and
[10] that the decisions taken by customers are based on the virtual queue length,
which is an upper bound on the unobserved actual queue length. However, our model
deviates from these papers by allowing a nonhomogeneous population of customers,
in addition to more involved decision rules described in the sequel.

In practice, there are two types of models for ticket queues: (i) models where
customers must first draw a ticket in order to view their number, as is the case in [19],
and (ii) models where customers see the number that they can draw before drawing
the ticket, as we consider here. Thus, a customer that arrives to such a system can see
both the ticket number that s/he can draw and the displayed number of the customer
currently being served. Based on the difference between the two numbers (the virtual
queue length), s/he decides whether to balk or to draw the number and join the queue.

The first model, where customers must draw a ticket in order to see their number, is
operated by electronic queueing management systems and fits high volume businesses
that provide a range of services, where each type of service has its own queue. The sec-
ond type of model is applied in take-a-number systems that fit small service facilities
where a single type of service is provided, like pharmacies, cell phone repair stores,
post offices, etc. Technically speaking, the main difference between the two models is
that in the second type, customers who decide to balk upon arrival, based on the vir-
tual queue length, leave the system without drawing a number. Thus, under the second
type of ticket queues, the virtual queue length better reflects the actual queue length,
as customers who leave upon arrival, do not draw a ticket and therefore, prevent an
artificial increase of the virtual queue length. For this reason, from the point of view of
customers, take-a-number systems are preferable to electronic queueing management
systems. We note that in reality both types of ticket queues are common. Moreover,
as electronic queueing management systems become more popular, the ticket number
that is next to be drawn will probably be displayed on the panel. That is, modern
systems will probably behave similarly to take-a-number systems.

In both types of systems, namely electronic queueing management systems and
take-a-number systems, customers can take advantage of the fact that their turn is kept
while going to wander around (orbit hereafter), as long as they return to the waiting
room on time, i.e., before missing their turn. Thus, customers can try to decrease
the burden of the waiting time by utilizing this time efficiently, as, for example, for
completing some errands (like shopping) at a nearby location, or by relaxing at some
coffee shop.

There is a vast literature on increasing the servers’ efficiency by utilizing them
during their idle time for doing some ancillary duties, so-called “vacations;” see, for
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example, [3, 13–16, 20, 22]. Recently, Hanukov et al. [5, 6, 7] have proposed an
innovative idea by which the servers’ idle time is utilized for preparing and storing
some preliminary services for future incoming customers. In this current study, we
adopt a similar idea, but now it is the strategic customers who utilize their waiting
time efficiently by going to “orbit.”

This paper considers a ticket queue operated by take-a-number-system, and a non-
homogeneous population of customers that consists of two types: the first type, called
regular customers, arrives at a Poisson rate and each individual draws a ticket regard-
less of the queue length and stays in the waiting room until being served. In marketing
terminology these customers are called captive customers. In our case, the population
of such customers consists of, for example, elderly or handicapped people or ones
that had to travel a long way to reach the service facility. The customers of the other
type, called strategic customers, also arrive at a Poisson rate, but immediately after
observing the virtual queue size, they exercise a two-threshold policy defined by a pair
of positive integers (m, n), where m < n, as follows: if the virtual queue length does
not exceedm, they draw a ticket and act like regular customers, i.e., they join the queue
and wait until being served. If the virtual queue length is n or above, the customer
leaves the system never to return. If the virtual queue length is greater than m but is
less than n, a strategic customer draws a ticket and becomes an orbit customer, namely
s/he goes out temporarily for having a cup of coffee or to run some errands, and after
a random time s/he returns back to the waiting room. When an orbit customer returns
to the system, s/he observes the display panel that shows the number of the customer
currently being served, and if that number is larger than her/his own ticket number
(i.e., the customer missed her/his turn), the customer leaves the system. Otherwise,
the customer joins the queue and waits there until being served.

An interesting issue related to the conclusions of Kuzu et al. [12], in the context
of strategic customers in our model, is the improvement over time of their forecast
on the optimal orbiting duration. However, since the orbit time depends on many
accidental factors that are not under control, we look here for the mean orbit time,
taking into account the following components associated with the orbiting customers:
(i) the service reward obtained by those that do not miss their turn; (ii) the reward rate
(per unit time) of orbiting; and (iii) the opportunity cost for the total time that elapses
from themoment of drawing a ticket until the final departure from the system. This last
cost refers to a time duration that contains the orbiting time, and it usually represents
the loss of income due to taking some time off from work. Note that the longer the
orbiting time, the higher the reward from orbiting but, simultaneously, the higher the
risk of missing the turn for service. We also analyze an alternative extended model,
where we consider a penalty to be incurred if a certain deadline that the customer
needs to meet is missed.

The system’s complexity increases rapidly with the parametersm and n. We present
a complete analysis of the case wherem � 1 and n � 3. The generalization procedure
for larger values of the parameters (m, n), 0 ≤ m < n, is detailed in the Appendix.

The outline of the paper is as follows: Sect. 2 presents the exact model formulation.
Section 3 consists of a full steady-state probabilistic analysis of the system. In Sect. 4,
various performance measures are derived regarding the expected number of regular
and of strategic customers in the waiting room and in the system, where the latter
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includes the orbiting customers. In Sects. 5 and 7 the Laplace–Stieltjes transforms of
the sojourn time of a regular and of a strategic customer, respectively, are derived.
The probability that a strategic customer is actually served is computed in Sect. 6.
Section 8 deals with the question of the optimal orbit time, as mentioned above. For
this sake, we provide several numerical examples that demonstrate how the economic
optimal mean orbit time can be obtained. Section 9 concludes the paper.

2 Notation andmodel formulation

Consider a Markovian queue with a single server that serves two types of customers,
called “regular” and “strategic.” Regular customers arrive according to a Poisson pro-
cess with rate λ, while strategic customers arrive according to a Poisson process with
rateα. The service time of any customer reaching the server is exponentially distributed
with mean 1/μ. All processes are mutually independent. A regular customer draws a
number upon arrival and waits in the queue until being served. A strategic customer
first observes the displayed running number of the current customer being served,
and then looks at the number of the ticket that s/he can draw from the take-a-number
machine. LetD (D ≥ 1) be the difference between those two numbers, which is called
the virtual queue length. Strategic customers are assumed to use a double-threshold
policy (m, n) where 1 ≤ m < n − 1 : if D is greater than or equal to a pre-specified
number, n, the strategic customer balks never to return, without drawing a number. If
D ≤ m, the strategic customer draws a number and joins the queue. However, in the
in-between case, where m < D < n, the strategic customer becomes a Real Orbit
(RO) customer, namely the customer draws a ticket and goes out to wander around
for an exponentially distributed random time with mean 1/β. In order for the case
m < D < n to be nonempty, we assume that n ≥ m + 2. It is also assumed that
the system is such that customers can see if the server is busy or idle. When a RO
customer returns to the waiting room, s/he acts as follows: (a) if the displayed number
is equal to her/his own ticket number, then, clearly, no one is waiting in queue and
the server is free, so the customer that has just returned from orbiting starts her/his
service immediately, without waiting. (b) if the displayed number is lower than her/his
own number, the customer joins the queue. (c) if the customer returns and finds that
s/he missed her/his turn, then there are two options: (c1) if the server is busy then the
customer abandons the system. (c2) if the server is free, we assume, that the server will
accept the customer only if the last customer that got served had a ticket number which
is lower than the number of the RO customer that has just returned. In this last case,
where the server accepts the RO, the displayed running number is moved backward to
indicate the number of the RO that is currently in service. The assumption described
in case (c2) guarantees that the order in which the customers are served is aligned
with the order of their ticket numbers, i.e., no customer gets served if a customer with
a higher number has already been served. In the sequel, we will use the terminology
“in queue” in order to refer to the “waiting room”.

The type of systems described above fits many systems where customers that have
drawn a number do not need to wait physically in queue in order to be served. The
customers just need to make sure not to miss their turn. In a single-server system, like
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in a small postal office operated by a single server, where the server and the customers
in the waiting room can see each other at any point of time, handling case (c) is simple.
However, in large systems, as in medical centers, it is common that the waiting room
serves customers of a number of doctors. Thus, any individual doctor cannot know,
by inspecting the waiting room, how many customers are waiting for her/him. The
assumption that customers can see if the server is busy or idle is needed for handling
the RO customers that return to the system, while their number is lower than the one
displayed; see case (c) above. Thus, in the example of a medical center (or similar
service systems), we assume that an indicator light signals that the doctor is idle. Our
model fits systems of small or large size, as described above.

In order to analyze the system in steady state, we use the following notation: let k
denote the current number of strategic customers in the system (in orbit, in service or
in queue). By definition, 0 ≤ k ≤ n − 1. For a given k, the system’s state is defined
by a (k + 1)-dimensional vector (c0, c1, c2, . . . , ck). c0 is a nonnegative integer that
indicates the number of regular customers that are currently in system and have arrived
before the first strategic customer. For 1 ≤ i ≤ k, ci is represented by Nq , where
N ≥ 0 is an integer, and q is either {out} or {in}. Specifically, ci � Nq indicates that
(i) N regular customers have arrived after the arrival of the i th strategic customer, and
before the arrival of the (i + 1)st strategic customer. (ii) q � out indicates that the
i th strategic customer is still orbiting, where q � in indicates that the i th strategic
customer is present in the system, as s/he is either an orbiting customer that returned
to the queue, or s/he is a strategic customer that has arrived when the virtual queue
length did not exceed m.

Next, we consider a few examples that shed light on the above definition: (i) the
2-dimensional vector (7, 4out) describes a state where k � 1, i.e., a single strategic
customer is in the system, along with 7+4 � 11 regular customers, 7 of which arrived
before the strategic customer who is currently a RO, and 4 arrived after that strategic
customer. In particular, we deduce that n ≥ 8, as the strategic customer found upon
arrival a virtual queue length of at least 7, and s/he decided to join the system rather
than to balk. (ii) consider a 4-dimensional vector (7, 4out, 0in, 2out) describing the state
with k � 3 strategic customers, in addition to 7+4+0+2 � 13 regular customers, out
of which 7 arrived before the first strategic customer, 4 after the first strategic customer
but before the second strategic customer, no regular customer arrived in-between the
second and the third strategic customers, and two regular customers arrived after the
third strategic customer. The first and third strategic customers are RO (out), while the
second one is waiting in queue (in). From this example, we can deduce that n ≥ 14,
as upon arrival of the third strategic customer, the virtual queue length was at least
13, and this customer did not balk. (iii) For the thresholds m � 1 and n � 3, the state
00out0out0out is infeasible, as if it was feasible then there should have been a state
from which the state 00out0out0out is reachable. We consider the following cases: (a)
if 00out0out0out was reachable by an end of service of a regular customer that arrived
before the third strategic customer, then that regular customer should have arrived
before the first strategic customer, as otherwise the strategic customers that arrived
before the regular customer, would have missed their turn. Thus, the third strategic
customer saw upon arrival a virtual queue length of 3, and as n � 3, he should
have balked immediately without drawing a ticket. (b) if the state 00out0out0out was
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reachable from state 00out0out by an arrival of a third strategic customer, then this last
strategic customer would have found upon arrival a virtual queue length of 1, as no one
was in queue upon his/her arrival, and by the system’s description, the server would
be idle and the number on the panel would be the last number that was issued before
the new customer drew a ticket. Thus, the virtual queue length upon arrival of the third
strategic customer would have been 1, meaning that he would immediately be served,
contradicting the fact that this strategic customer went out orbiting.

Before proceeding to the analysis of the system, we show in Proposition 1 that
for a given value of n (the threshold for strategic customers to balk upon arrival), the
diagram (see Fig. 1) that depicts the transition rates between the states of the system
consists of 2·3n−1 columns, where each column is infinitely long. Figure 1 is a diagram
for the casem � 1 and n � 3. This diagram indicates the states and the corresponding
transition rates between them. In particular, the states are presented by 18 columns of
infinite size each (where a diagram for n � 4 would have consisted of 54 columns).
For the sake of the proof, we define two special types of states:

Definition 1 A state is said to be an origin state if (i) it is the empty state 0, or (ii) if it
satisfies the following two conditions: it is impossible to reach that state by an arrival
of a regular customer and, in addition, there is at least one customer in that state that
will eventually be served. Thus, an origin state, if nonempty, contains either a regular
customer or a strategic customer that is not orbiting.

Definition 2 A state is called a semi-empty state if it consists only of customers that
are currently orbiting, i.e., all customers are RO.

In Fig. 1, where m � 1 and n � 3, there are 18 origin states, namely the states
0, 00in, 10in, 10out, 20in, 20out, 01in0in, 01in0out, 00in0in, 00in0out, 10in0in, 10in0out,
10out0in, 10out0out, 00in0in0in, 00in0in0out, 00in0out0in and 00in0out0out. In addition to
these states, there are two semi-empty states that consist only of RO customers, namely
00out and 00out0out.

Proposition 1 For any double-threshold policy m ≥ 1 and n ≥ m + 2, the transition-
rate diagram consists of 2 · 3n−1 columns, where each column is infinitely long.

Proof Note that any (infinite-length) column in the diagram starts at an origin state,
so that the number of columns in the diagram equals the number of origin states. The
states in the given column are accessible from the origin state by arrivals of regular
customers. In addition, there are n−1 semi-empty states, where each one consists of k,
1 ≤ k ≤ n− 1, RO customers. We assume, without loss of generality, that each of the
semi-empty states with k RO customers is at the top of the column whose origin state
consists of exactly k strategic customers that are currently in queue or in service (see
Fig. 1). It remains to prove that the number of origin states for the double-threshold
policy (m, n) is 2 · 3n−1.

For any given n ≥ m + 2 ≥ 3, let OS(x) be the number of origin states that consist
of x ∈ {0, 1, 2, . . . , n} customers. For x � 0, OS(0) � 1, as there exists a single
origin state with no customers, which is state 0. For x � 1, OS(1) � 1, as there exists
just one origin state with a single customer, which is 00in. For x � 2, OS(2) � 4,
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as there exist 4 origin states each with 2 customers, namely 10in, 10out, 00in0in and
00in0out. Thereafter, for n ≥ 3 and 2 < x ≤ n we prove that OS(x) � 3 · OS(x − 1).
For this sake, we show that any origin state with x − 1 customers can be extended
to 3 origin states with x customers as follows: (i) by concatenating to its end 0in or
0out, we get 2 new origin states with x customers, or (ii) by adding 1 to the number of
regular customers that arrived before the first strategic customer, we get a third origin
state. For example, the origin state with 2 customers 0in0out generates 3 origin states
with 3 customers, namely 0in0out0in, 0in0out0out and 1in0out. As can be seen, all the
new origin states are disjoint.

In order to complete the proof, it is left to show that any threshold policy (m, n) is
associated with 2 · 3n−1 origin states, each consisting of at most n customers. In other

words, we need to prove that
n∑

x�0
OS(x) � 2 · 3n−1. For this sake, we calculate

n∑

x�0

OS(x) � 1 + 1 + 4 + 3 · 4 + 32 · 4 + · · · + 3n−2 · 4 � 2 + 4
n−2∑

j�0

3 j � 2 · 3n−1

(QED)

In view of the exponential size of the transition-rate diagram as a function of n,
see Proposition 1, we perform a complete analysis for the minimal possible values of
the thresholds n and m that preserve the structure of the system, namely m � 1 and
n � 3.Aswill be demonstrated, even this small-size case is quite intricate. Its analysis
is basic in understanding the dynamics of similar higher-dimensional systems.

3 The casem� 1 and n� 3

3.1 Matrix geometric analysis

According to Proposition 1, the system’s states in Fig. 1 are arranged in 2 · 3n−1 � 18
columns, each of infinite size. In order to present the associated infinitesimal generator
matrix of this Markovian process, we arrange the states of the process in the following
rows, indexed by i ≥ 0.

The case i � 0 is depicted by the first double row and includes the 20 origin and
semi-origin states

( 0, 00in, 00out, 10in, 10out, . . . , 00in0in, 00in0out, 00out0out, . . . , 00in0out0in, 00in0out0out ).

Each other case i ≥ 1 is depicted by double row, which includes 18 states:

( i, 0i in, 1i in, 1iout, . . . , 00in0outi in, 00in0outiout ), i ≥ 1.

The above-described vectors are referred to as
−→
STi for i ≥ 0, where, for example,−→

ST0(4) � (
1, 0in

)
, and

−→
ST5(4) � (

1, 5out
)
.
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Let Q denote the infinitesimal generator matrix of the Markovian process depicted
in Fig. 1. The matrix Q is given by

Q �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0,0 B0,1 0 0 0 0 · · ·
B1,0 B1,1 A0 0 0 0 · · ·
B2,0 A2 B2,2 A0 0 0 · · ·
0 0 A2 A1 A0 0 · · ·
0 0 0 A2 A1 A0
...

...
...

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the submatrices of Q are the matrices.

B0,0 �
[
bi, j0,0

]

20×20
B0,1 �

[
bi, j0,1

]

20×18
B1,0 �

[
bi, j1,0

]

18×20
B1,1 �

[
bi, j1,1

]

18×18

B2,0 �
[
bi, j2,0

]

18×20
B2,2 �

[
bi, j2,2

]

18×18
A0 � λI18×18 A1 �

[
ai, j1

]

18×18
and A2 �

[
ai, j2

]

18×18
which are specified below:

bi, j0,1 �
{

λ i � 1, 3, 12, j � 1; i � j � 2; j + 1 � i � 4, 5, . . . , 11; j + 2 � i � 13, 14, . . . , 20.
0 otherwise.

bi, j2,0 �
{

α i � 1, j � 7.
0 otherwise.

bi, j1,0 �
⎧
⎨

⎩

μ i � j � 1.
α i � 1, j � 4; i � 2, j � 10.
0 otherwise.

bi, j0,0 �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ i � 2, j � 1; i � 15, 19, j � 2; j + 2 � i � 4, . . . , 7; j + 3 � i � 13, 14;
j + 4 � i � 8, 9, 16; j + 7 � i � 17, 18; j + 8 � i � 10, 11, 20.

β j + 1 � i � 5, 7, . . . , 11, 12, 14, . . . , 20; j + 2 � i � 15, 19, 20.
α i � 1, j � 2; i � 4, j � 14; i � 5, j � 16; i � 10, j � 18; j − 9 � i � 2, 11.
α + β i � 3, 12, j � 2.
−(λ + α) i � j � 1.
−(λ + α + μ) i � j � 2, 4, 10.
−(λ + α + β) i � j � 3.
−(λ + α + μ + β) i � j � 5, 11.
−(λ + μ) i � j � 6, 8, 13, 17.
−(λ + μ + β) i � j � 7, 9, 14, 15, 18, 19.
−(λ + α + 2β) i � j � 12.
−(λ + μ + 2β)

0
i � j � 16, 20.

otherwise.

bi, j1,1 �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ i � 2, 4, 10, 14, 18, j � 1; i � 3, 9, 13, 17, j � 2;
j + 2 � i � 5, 6, 11, 12; j + 4 � i � 7, 8; j + 6 � i � 15, 16.

β j + 1 � i � 4, 6, . . . , 18; j + 2 � i � 13, 14, 17, 18.
−(λ + α + μ) i � j � 1, 2.
−(λ + μ) i � j � 3, 5, . . . , 11, 15.
−(λ + μ + β) i � j � 4, 6, . . . , 12, 13, 16, 17.
−(λ + μ + 2β) i � j � 14, 18.
0 otherwise.

bi, j2,2 �
{−(λ + μ) i � j � 2.
bi, j1,1 otherwise.
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ai, j1 �
{−(λ + μ) i � j � 1, 2.
bi, j1,1 otherwise.

ai, j2 �
{

μ i � j � 1.
0 otherwise.

Let �p0 � (p0 p0,0in · · · p0,0in,0out,0out )20 and �pi �
(pi p0,i in · · · p0,0in,0out,iout )18 for i � 1, 2, 3, . . . be the probability vectors
of the system’s states. Further, denote the vector of all probability vectors by �p �
( �p0 �p1 �p2 · · · ) and let �ey � (

1 1 · · · 1 )T be a unit vector of dimension y. Thus, the
balance equations can be written as

�pQ � �0,

�p0�e20 +
∞∑

i�1

�pi �e18 � 1. (1)

3.2 Analysis

Using matrix geometric analysis, we first derive the system’s stability condition and
then calculate the corresponding steady-state probabilities.

3.2.1 The stability condition

According to Hanukov and Yechiali [4], when each of the matrices A0, A1 and A2
is lower triangular (which is the case in our model) the stability condition is given
by a0,00 < a0,02 , which in our model results in λ < μ. As can be seen, the stability
condition is determined by the regular customers, as the number of strategic customers
in the system is bounded from above.

3.2.2 Steady-state probabilities

Let R be the matrix satisfying

A0 + RA1 + R2A2 � 0.

In general, the matrix R is calculated via successive substitutions; see [17, 18].
However, in some special cases the matrix R can be obtained directly. One case is
when A2 is of rank 1, satisfying A2 � �c · �r , where �c is a column vector and �r is a
row vector normalized by �r · �e � 1 (see [18]). In this case, R can be calculated by
R � −A0(A1 + A0�e · �r )−1. In our model, A2 � �c · �r with �c � (μ, 0, 0, · · · , 0 )T and
�r � ( 1, 0, 0, · · · , 0 ).
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Another, more general case (see [4]) is when each of the three matrices A0, A1 and
A2 is lower triangular, as is the case in the current model. In such a case, the entries
of R are given explicitly by

rv,t � 0, v < t,

rv,v �

⎧
⎪⎪⎨

⎪⎪⎩

−av,v
1 −√

(av,v
1 )2−4 av,v

0 av,v
2

2 av,v
2

, av,v
2 > 0, av,v

0 > 0.

0, av,v
2 > 0, av,v

0 � 0,
−av,v

0
av,v
1

, av,v
2 � 0.

∀v.

rv,t � −
av,t
0 +

v∑

k�t+1
rv,kak,t1 +

v−1∑

τ�t+1
rv,τ r τ ,t at,t2 +

v∑

k�t+1

v∑

τ�k
rv,τ r τ ,kak,t2

at,t1 + at,t2 (r t,t + rv,v)
, v > t .

The steady-state probability vectors satisfy

�pi � �p3Ri−3, i � 3, 4, 5, . . . . (2)

In order to calculate those probability vectors, one needs first to obtain the vectors
�pi , i � 0, 1, 2, 3. This is achieved by considering the corresponding vector equations
from Eq. (1) along with the normalization equation. Thus,

�p0B0,0 + �p1B1,0 + �p2B2,0 � �0,
�p0B0,1 + �p1B1,1 + �p2A2 � �0,
�p1A0 + �p2B2,2 + �p3A2 � �0,
�p2A0 + �p3(A1 + RA2) � �0,

�p0�e20 +
2∑

i�1

�pi �e18 + �p3[I − R]−1�e18 � 1.

Once the vectors �pi , i � 0, 1, 2, 3, are calculated, the rest of the probabilities are
given by Eq. (2). Numerical examples are presented in Sect. 8, where the optimal
duration of the mean orbiting time is calculated for various system parameters.

4 Performancemeasures

We consider several performance measures related to the various types of customers.
Inwhat followswe derive expressions for (i) E[D]—themean size of the virtual queue,
i.e., those customers that are physicallywaiting in line or being served, augmentedwith
those in orbit; (ii)E[L]—the mean number of regular customers in the system; and
(iii)E[S]—themean number of strategic customers that are either waiting in line or are
being served. With those three measures, one can calculate a few more characteristics
of the system: E[L] + E[S] represents the mean total number of customers in queue

123



Queueing Systems (2020) 95:145–171 157

or in service, namely it is the number of customers that will eventually be served with
probability 1. E[D] − E[L] represents the mean number of strategic customers that
are either orbiting, waiting in queue or being served. Finally, the mean number of RO
customers is given by E[D] − E[L] − E[S].

In order to calculate E[D], we define the following two vectors: let �vD �
( 0 1 1 2 2 3 3 3 3 2 2 2 3 3 3 3 3 3 3 3 )T be a 20-dimensional column vector, asso-
ciated with the first double row of Fig. 1. The j th entry of the vector �νD indicates the
total number of customers in the system in the j th state of vector

−→
ST0, for 1 ≤ j ≤ 20;

see Sect. 3.1 for definition of the vectors
−→
STi for i ≥ 0. In addition, we define an

18-dimensional column vector, which is associated with each one of the other rows as
follows

�uD � ( 0 1 2 2 3 3 3 3 2 2 3 3 3 3 3 3 3 3 )T.

In order to explain this last vector, note that the only difference between rows i ≥ 1
in Fig. 1 is the value of i in ck , where ck � iq . In fact, each entry in the vector
�uD indicates the total number of customers in the system excluding those i regular
customers that arrived after the last strategic customer, corresponding to the vector of
states

−→
STi , i ≥ 1. For example, the total number of customers in the system according

to state
−→
STi (13) � (1, 0out, i in) is 3 + i : 1 + i regular and 2 strategic.

For every i ≥ 1, let�i18 � ( i, i, · · · , i )T be an 18-dimensional column vector.Thus,
E[D] can be calculated as follows:

E[D] � �p0 �vD +
2∑

i�1

�pi (⇀u D +
⇀
i 18) +

∞∑

i�3

i �pi �e18 +
∞∑

i�3

�pi �uD

� �p0 �vD +
2∑

i�1

�pi (⇀u D +
⇀
i 18) +

∞∑

i�3

i �p3Ri−3�e18 +
∞∑

i�3

�p3Ri−3 �uD

� �p0 �vD +
2∑

i�1

�pi (⇀u D +
⇀
i 18) + �p3

(
2[I − R]−1 + [I − R]−2

)
�e18 + �p3[I − R]−1 �uD .

The following two vectors will be helpful in calculating E[L], the mean number of
regular customers in the system. To be consistent, we denote by the letter ν vectors of
size 20, and by the letter u vectors of dimension 18. Let

�vL � ( 0 0 0 1 1 2 2 1 1 0 0 0 1 1 1 1 0 0 0 0 )T20,

�uL � ( 0 0 1 1 2 2 1 1 0 0 1 1 1 1 0 0 0 0 )T18.

The vector �vL indicates the number of regular customers in the system according to
each state in the vector

−→
ST0, while the vector �uL corresponds to the vector

−→
STi , i ≥ 1,

and it indicates the number of regular customers in the system, excluding the i regular
customers that arrived after the last strategic customer. Thus, E[L] can be calculated
as follows:
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E[L] � �p0 �vL +
2∑

i�1

�pi (⇀u L +
⇀
i 18) +

∞∑

i�3

i �pi �e18 +
∞∑

i�3

�pi �uL

� �p0 �vL +
2∑

i�1

�pi (⇀u L +
⇀
i 18) +

∞∑

i�3

i �p3Ri−3�e18 +
∞∑

i�3

�p3Ri−3 �uL

� �p0 �vL +
2∑

i�1

�pi (⇀u L +
⇀
i 18) + �p3

(
2[I − R]−1 + [I − R]−2

)
�e18 + �p3[I − R]−1 �uL .

Finally, in order to calculate E[S], the mean number of strategic customers that are
not orbiting, we define the following vectors:

�vS � ( 0 1 0 1 0 1 0 2 1 2 1 0 2 1 1 0 3 2 2 1 )T20,

�uS � ( 0 1 1 0 1 0 2 1 2 1 2 1 1 0 3 2 2 1 )T18.

The vector �vS (�uS) indicates the number of strategic customers in the system that
are not orbiting, according to each state in the vector

−→
ST0 (

−→
STi , for i ≥ 1). Thus, E[S]

can be calculated as follows:

E[S] � �p0�vS +
2∑

i�1

�pi⇀uS +
∞∑

i�3

�pi �uS � �p0�vS +
2∑

i�1

�pi⇀uS +
∞∑

i�3

�p3Ri−3�uS

� �p0�vS +
2∑

i�1

�pi⇀uS + �p3[I − R]−1�uS .

5 Sojourn time of a regular customer

Let μ̃(s) � μ/(μ + s) be the Laplace–Stieltjes transform (LST) of a single service
time (in the sequel we use μ̃ instead of μ̃(s)). Let m � μ/(μ + β) be the probability
that a service completion occurs before a RO customer returns to the system. Denote
by k̃a, j (s) � μ̃am j + μ̃a+1(1−m j ), abbreviated to k̃a, j , the LST of the sojourn time of
a regular customer that arrives to the system when there are (a−1) customers waiting
in line or in service, and an additional single RO customer. The above follows as the
regular customer that has just arrived to the system will either leave the system after
a service durations (including his/her own), which will occur if j ≤ a − 1 customers
complete their service before the return of theRO (an event that occurswith probability
m j ); or, alternatively, this regular customer will leave the system after (a + 1) service
durations, if the RO returns on time (with the complementary probability 1−m j ). For
the sake of illustration, k̃2,1(s) describes the case where a regular customer arrives to
state (1, 0out), and s/he either completes her/his service after two service durations,
which occurs if the customer in service ends her/his service before the return of the RO
customer, or, alternatively, s/he completes her/his service after three service durations,
which occurs in the case where the RO customer arrived before the start of her/his
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service. Note that the LST k̃2,1(s) applies to other situations that will appear later with
respect to the vectors �vY and �uY .

Let m2 � μ/(μ + 2β) be the probability that a single service is completed before
any of two RO customers returns to the system. Let x̃(s) � μ̃2m2 + μ̃3(1 − m2)m2 +
μ̃4[(1 − m2)(1 − m) + (1 − m2)m(1 − m)], abbreviated as x̃ , be the LST of a regular
customer’s sojourn time that arrives to the system when there is no one in line, but the
server is busy serving a customer, and there are two RO customers. The new customer
will spend two, three or four service durations, until completing her/his service. The
end of service of the regular customer will be after two service durations if no RO
customer returns to the system before the beginning of service of the regular customer
(see the first term in the above expression). The end of service of the regular customer
will be after three service durations if only one of the two RO customers returns to the
system before the beginning of service of the regular customer (see the second term in
the above expression). Finally, the case where the regular customer stays in the system
during four service durations, occurs if the two RO customers will not miss their turn
(see the third term in the above expression).

Using the above notation, let the following two vectors of dimension 20 and 18,
respectively, be defined as follows:

�vY � ( μ̃ μ̃2 μ̃ μ̃3 k̃2,1 μ̃4 k̃3,2 μ̃4 k̃3,2 μ̃3 k̃2,1 μ̃ μ̃4 k̃3,2 k̃3,1 x̃ μ̃4 k̃3,2 k̃3,1 x̃ )T,

�uY � ( μ̃ μ̃2 μ̃3 k̃2,1 μ̃4 k̃3,2 μ̃4 k̃3,2 μ̃3 k̃2,1 μ̃4 k̃3,2 k̃3,1 x̃ μ̃4 k̃3,2 k̃3,1 x̃ )T.

The vector �vY depicts the corresponding LSTs of a regular customer’s sojourn time
according to the states in vector

−→
ST0, while �uY depicts the above LSTs, each divided

by μ̃i , according to vector
−→
STi , for i ≥ 1. By using Eq. (2), we conclude that the LST

of a regular customer’s sojourn time in the system is given by

Ỹ (s) � �p0 �vY +
∞∑

i�1

μ̃i �pi �uY � �p0 �vY +
2∑

i�1

μ̃i �pi �uY +
∞∑

i�3

μ̃i �p3Ri−3 �uY

� �p0 �vY +
2∑

i�1

μ̃i �pi �uY + μ̃3 �p3
∞∑

i�3

(μ̃R)i−3 �uY � �p0 �vY +
2∑

i�1

μ̃i �pi �uY + μ̃3 �p3[I − μ̃R]−1 �uY .

Note that [I − μ̃R]−1 exists as μ̃ ≤ 1.

6 The probability that a strategic customer will be served

In this section, we calculate the probability that a strategic customer will be served.
Based on this derivation, the sojourn time’s LST of a strategic customer will be cal-
culated in Sect. 7. Recall that a strategic customer who becomes a RO and returns to
the waiting room after missing her/his turn abandons the system without being served.
Recall also that for a system with m � 1 and n � 3, a strategic customer draws a
ticket if s/he arrives to the system when the virtual queue length is at most two. We
consider three cases: (i) the strategic customer, upon arrival, finds the system in one
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of the following states: (0), (1), (0, 0in), (0, 0out) or (0, 0out, 0out). Under any of these
states, the strategic customer joins the system upon arrival as s/he finds a virtual queue
length of one, and is served with probability one. (ii) The strategic customer arrives
when there are two customers in the system but none of them is in orbit, as is the
case with the states (2), (0, 1in), (1, 0in) and (0, 0in, 0in). In such cases, our customer
will go out orbiting and will be served if one of the following cases happens: (a) the
customer returns before any termination of service; (b) the customer returns after the
first service has been completed but before the end of service of the second; (c) the
customer returns after both customers completed their service, but before a new arrival
occurs. (iii) Our strategic customer arrives to the systemwhen there is one customer in
service, hereafter called the first customer, and another in orbit, hereafter called RO,
which can happen in the following two states: (1, 0out) and (0, 0in, 0out). Our strategic
customer will then go out orbiting and will finally be served if one of the following
cases happens: (a) our customer finds out, upon her/his return, that no customer has
completed her/his service, i.e., the orbiting duration of our customer was shorter than
the service duration; (b) our customer returns from orbiting after the service com-
pletion of the first customer, but before the return of the RO customer that precedes
her/his, and also before any arrival of a new customer, implying that the server is
idle upon her/his return; (c) the RO customer that precedes our customer returns to
the system before the first customer has completed her/his service, and our customer
returns before the service completion of the RO; (d) the service of the first customer
was completed, then the RO customer that precedes our customer, returns, and then,
our customer returns before the service of the RO is completed; (e) the service of the
first customer was completed, the RO customer that precedes our customer, returns
and completes her/his service, and then our customer returns, but all this happens
before any new arrival of customers; (f) the RO that precedes our customer returns
while the first customer is still being served, then the services of these two customers
are completed, and then our customer returns, where all of that occurs before a new
customer arrives. Taking into account all the above possibilities, we now calculate the
probability that a strategic customer ends up getting service. Let

ps1 � p0 + p0,0out + p0,0out,0out + p1 + p0,0in

+ (p2 + p0,1in + p1,0in + p0,0in,0in )

(
β

β + μ
+

μ

β + μ

β

β + μ
+

μ

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α

)

+ (p1,0out + p0,0in,0out )

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β

β + μ
+

μ

2β + μ + λ

β

2β + λ + α
+

β

2β + μ

μ

β + μ

β

β + μ

+
μ

2β + μ + λ

β

2β + λ + α

β

β + μ

+
μ

2β + μ + λ

β

2β + λ + α

μ

β + μ + λ + α

β

β + λ + α

+
β

2β + μ + λ

μ

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

be the probability that an arriving strategic customer obtains service. Also, let ps2 �
p0 + p0,0out + p0,0out,0out + p1 + p0,0in + p2 + p0,1in + p1,0in + p0,0in,0in + p1,0out + p0,0in,0out
be the probability that an arriving strategic customer joins the system, i.e., there are
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at most two customers in the system. Then, the probability that a strategic customer
who joins the system gets service is

ps � ps1
ps2

. (3)

7 Sojourn time of a strategic customer

We first derive the LST of a strategic customer’s sojourn time while waiting in line or
while being served, and then the LST of her/his total sojourn time. For a system with
m � 1 and n � 3, a strategic customer spends a single service duration if s/he arrives
while the server is idle, and otherwise s/he spends two or three service durations.
The calculation of the LST of the sojourn time of a strategic customer, excluding the
orbiting duration, denoted by W̃1(s), is based on the cases detailed in Sect. 6, while
case (iii) (a) is divided into two sub-cases.

W̃1(s) � (p0 + p0,0out + p0,0out,0out )μ̃ + (p1 + p0,0in )μ̃
2

+ (p2 + p0,1in + p1,0in + p0,0in,0in )

(
βμ̃3

β + μ
+

μμ̃2

β + μ

β

β + μ
+

μμ̃

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α

)

+ (p1,0out + p0,0in,0out )

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βμ̃2

2β + μ

μ

β + μ
+

2βμ̃3

2β + μ

β

β + μ

+
μμ̃

2β + μ + λ

β

2β + λ + α
+

βμ̃2

2β + μ

μ

β + μ

β

β + μ

+
μμ̃2

2β + μ + λ

β

2β + λ + α

β

β + μ

+
μμ̃

2β + μ + λ

β

2β + λ

μ

β + μ + λ + α

β

β + λ + α

+
βμ̃

2β + μ + λ

μ

β + μ + λ + α

μ

β + μ + λ + α

β

β + λ + α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Consequently, the LST of a strategic customer that has joined the system is

W̃ (s) � W̃1(s)

ps1
.

Let β̃(s) � β/(β + s), abbreviated as β̃, be the LST of the time a strategic cus-
tomer spends in orbit. In order to simplify the presentation, we use the following two
constants:

Θ �
(

β

β + μ
+

μ

β + μ

β

β + μ
+

μ

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α

)

and
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	 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β

β + μ
+

μ

2β + μ + λ

β

2β + λ + α
+

β

2β + μ

μ

β + μ

β

β + μ

+
μ

2β + μ + λ

β

2β + λ + α

β

β + μ

+
μ

2β + μ + λ

β

2β + λ + α

μ

β + μ + λ + α

β

β + λ + α

+
β

2β + μ + λ

μ

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, the LST of a strategic customer’s total sojourn time from his/her arrival
instant, until her/his departure, including orbit time, is

T̃1(s) � (p0 + p0,0out + p0,0out ,0out )μ̃ + (p1 + p0,0in )μ̃
2

+ (p2 + p0,1out + p1,0out + p0,0out ,0out )β̃

(
βμ̃3

β + μ
+

μμ̃2

β + μ

β

β + μ
+

μμ̃

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α
+ (1 − 
)

)

+ (p1,0out + p0,0out ,0out )β̃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βμ̃2

2β + μ

μ

β + μ
+

2βμ̃3

2β + μ

β

β + μ

+
μμ̃

2β + μ + λ

β

2β + λ + α
+

βμ̃2

2β + μ

μ

β + μ

β

β + μ

+
μμ̃2

2β + μ + λ

β

2β + λ + α

β

β + μ

+
μμ̃

2β + μ + λ

β

2β + λ + α

μ

β + μ + λ + α

β

β + λ + α

+
βμ̃

2β + μ + λ

μ

β + μ + λ

μ

β + μ + λ + α

β

β + λ + α
+ (1 − 	)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Finally, the LST of the total sojourn time of a strategic customer who joins the
system is

T̃ (s) � T̃1(s)

ps2
. (4)

8 How long to stay in orbit?

A strategic customer who goes out to orbit does not know for sure when s/he will
return to the system. It is of interest to determine the economic optimal mean value
of the orbit duration 1/β. An analytical determination of the optimal mean orbit time
seems to be intractable even under the assumption of exponential orbit time and a
simple economic model. For this reason, we analyze below two numerical objective
functions that exhibit how the optimal value β−1 can be obtained numerically.

Objective function 1 Let Rorb � g(1− e−ξ X ) be the accumulated reward for an orbit
duration of X units of time (ξ > 0), which represents a diminishing marginal reward
as a function of the orbit duration. Under the assumption of an exponential orbit time,
X ∼ exp(β), the mean orbiting reward is given by

E[Rorb] � gξ

ξ + β
. (5)
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For the particular case ofm � 1 and n � 3, the probability that a strategic customer
who joins the system goes to orbit is given by

porb � p2 + p0,1in + p1,0in + p0,0in,0in + p1,0out + p0,0in,0out

ps2
.

Assume that (i) the monetary worth of the service offered by the system is r, and (ii)
the opportunity cost rate for the time from the arrival instant until the departure instant
of a strategic customer is c > 0. This cost applies to the orbiting time, the waiting time
and the service time. Hence, the expected total reward function of a strategic customer
is defined by

G(β) � rps + E[Rorb]porb − cE[T ]. (6)

The effect of β The graph of G(β), depicted in Fig. 2, shows the effect of β on the
expected total reward when the other parameters are λ � 8, μ � 10, α � 9, ξ � 10,
r � 10, g � 10 and c � 1.

It shows that G(β) is a uni-modal function with a maximum value G(β∗) � 11.1
at β∗ � 12.1, it increases rapidly as β goes from 0 to β � 12.1 and then decreases
moderately in a convex fashion. This implies that the optimal mean orbiting time is
1/12.1 h ≈ 5 min.

A further sensitivity analysis of β∗ with respect to each of the monetary parameters,
namely r, g and ξ , is given below. Figures 3, 4 and 5 show, respectively, the dependence
of β* on each of the monetary parameters:

(a) β* as a function of r Figure 3 shows that β∗ is an increasing function (almost
linearly) of r. That is, the larger is the value of the service, the shorter is the
expected orbit duration.

(b) β* as a function of g Figure 4 shows that β∗ is a convex decreasing function of
g. That is, the higher is the orbiting reward, the higher is the mean orbiting time.

(c) β* as a function of ξ Figure 5 is the most interesting among the three figures: for
ξ between 5 and 11, β∗ is a convex decreasing function, implying that the optimal
mean orbiting time is increasing. At ξ � 11, β∗ starts to be an increasing function
of ξ, namely the optimal mean orbiting time is decreasing. This phenomenon
suggests that an increase of ξ above 11 implies a too low marginal contribution
to the orbit reward, which does not compensate for the increasing risk of missing
one’s turn. Thus, for ξ > 11, the mean orbiting time is slowly decreasing.

Objective function 2 Suppose that, in addition to the opportunity cost considered in
objective function 1, a strategic customer has a deadline, denoted by ω, for her/his
total sojourn time, so that, if the deadline is missed, a penalty of η monetary units is
incurred by the customer. Thus, the expected total reward is now given by

Z (β) � rps + E[Rorb]porb − cE[T ] − η

∞∫

ω

fT (t)dt, (7)
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Fig. 2 The expected reward
G(β), as a function of β for
λ � 8, μ � 10, α � 9, ξ � 10,
g � 10 and c � 1
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Fig. 3 Optimal β as a function of the worth of service r

where fT (t) is the probability density function of the total sojourn time of a strate-
gic customer, consisting of orbiting, waiting and service time, up to her/his ultimate
departure from the system. This density is calculated as the inverse of the LST T̃ (s)
(see Eq. (4)). Figure 6, which corresponds to the parameter values of Fig. 2, depicts
the probability that a strategic customer fails to meet her/his deadline, as a function
of β, for ω � 0.3. The graph shows the following interesting phenomenon: as β

increases beyond β � 5, or alternatively, the mean orbit time 1/β decreases below
0.2, the probability of missing the deadline decreases, but this is just until β � 10, and
thereafter, the probability of missing the deadline is weakly increasing. The reason for
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Fig. 4 Optimal β as a function of g
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Fig. 5 Optimal β as a function of the diminishing marginal reward ξ ∈ (5, 20)

this peculiar behavior is the fact that initially, when β is small enough, the orbiting
time is long, and upon the end of the orbiting duration, it is most probable that the
customer misses her/his turn for getting served, so the customer quits the system at
the moment s/he returns from orbit, implying that the total sojourn time in the interval
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Fig. 6 The probability that a strategic customer misses the deadline ω � 0.3 as a function of β

where β < 10 consists mainly of the orbit time, implying that the shorter the orbit
time in this interval, the smaller the probability of missing the deadline. However, as β

continues to increase beyond 10 it becomes more probable that a customer returns to
the system on time to get service after orbiting. Thus, as β increases, the total sojourn
time of such a customer consists not only of his/her orbit time, but also of the time
spent in the waiting room and in service, implying that the probability of missing the
deadline is not monotone decreasing in β.

(d) Effect of the penalty η The graphs of β∗ as function of η for two values of the
orbiting rewards, g � 15 and g � 10, are depicted in Fig. 7.

P(sojourn time >ω)

As can be seen, the lower curve (g � 15) is increasing, but always below the upper
curve (g � 10), which is decreasing. In particular, this implies that the optimal orbit
duration for g � 15 is strictly higher than that for g � 10, independently of η, and
that for g � 15, β∗ < 10, while for g � 10, β∗ > 10.

For g � 15, the reward from orbiting is significantly higher than the worth of
service r , so a customer is mainly interested in maximizing the orbit reward at the cost
of missing his/her turn, as long as the deadline is not missed. This region corresponds
to the initial decreasing part of the curve in Fig. 6, i.e., values of β∗ below 10.

However, for g � 10, the reward from orbit does not compensate for missing one’s
turn for service, so the customers tend to spend less time in orbit (β∗ is above 10) and
return on time to get service.
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Fig. 7 β∗ as a function of η for g � 10 and for g � 15

The shapes of the curves inFig. 7 are explained as follows: as the penaltyη increases,
customers aim at decreasing the probability ofmissing the deadline, namely decreasing
P(sojourn time > ω). Figure 6 shows that achieving this goal depends on the value of
β. In the range 0 to 10, larger values of β decrease the above probability, while above
10 the opposite occurs. Those insights explain the curves in Fig. 7. When g � 15,
β∗ is smaller than 10, implying that decreasing of P(sojourn time > ω) is achieved
by increasing β∗. But, when g � 10, β∗ is higher than 10, and thus, decreasing
P(sojourn time > ω) is achieved by decreasing β∗.

Figure 8 depicts the strategic customer’s expected reward, Z (β∗), as a function of
η, for g � 10. The curve is approximately linear, decreasing in η, and even assumes
negative values when the penalty is high (η > 40), implying that the optimal strategy
for such strategic customers is to balk upon arrival to the system.

9 Conclusions

The intriguing ticket queue problem is investigated assuming a nonhomogeneous pop-
ulation of customers that consists of two types: (i) regular customers that draw a ticket
regardless of the queue length and stay in line until being served; and (ii) strategic
customers that first observe both the displayed running number of the last customer
being served, and the number of the ticket that s/he can draw from the take-a-number
machine, and then, depending on the difference between the two numbers, namely the
virtual queue length, s/he chooses one of the following three decisions: (a) balking;
(b) drawing a ticket and joining the line as a regular customer; (c) drawing a ticket,
and then going to orbit for a random duration, i.e., leaving the system temporarily. We
analyze this involved stochastic system by using matrix geometric methods, derive the
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Fig. 8 The optimal expected reward, Z (β∗), as a function of η for g � 10

system’s steady-state probabilities, calculate the LST of a regular customer’s sojourn
time, the probability that a strategic customer is served, and the LST of the latter’s
sojourn time. As a consequence, the system’s performance measures are constructed.
Based on those results, an economic optimalmean orbiting time of a strategic customer
is calculated.
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Appendix: How to construct diagram (m, n + 1) given diagram (m, n)?

Each node in the diagram is represented by a string. A node having a string of length
j represents a state with j − 1 strategic customers. Thus, in a state represented by a
node of the form (i), i ≥0, there are no strategic customers. Observe from the form of
Fig. 1 that all the nodes in any row i ≥0 of diagram (m, n), have i regular customers
that have arrived after the arrival of the last strategic customer.

It is quite easy to transform a given diagram (m, n), m ≥1, n ≥3 and m <n – 1,
to a diagram (m + 1, n) as the number of nodes is independent of m; see Proposition
1. The only changes required are to redirect some of the arcs of the diagram. We
skip the details of the changes needed in the diagram for increasing m, as they are
straightforward.

In what follows, we provide a forward recursion that builds diagram (m, n + 1)
from any given diagram (m, n), where m <n – 1, m ≥1, n ≥3 and m + n >4. The
nodes of diagram (m, n) in row i ≥ 0 that need to be augmented when increasing n by
1 are the nodes for which a new incoming strategic customer has to quit the system
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upon arrival as D � n, even if the last i regular customers that joined the system
are totally removed. Alternatively, in a node that can be augmented, the last strategic
customer of its string is preceded by n− 1 customers of any type. We call such a node
an augmentable node. As will be shown below, the augmentation process does not
alter the length of the strings that are generated from the augmentable nodes.

In addition to the augmentation process,weneed add somenewnodes to the diagram
(m, n + 1) that are not generated by the augmentable nodes of diagram (m, n). These
new nodes are represented by strings of length n + 2.

Next, we describe in detail the two steps for generating the diagram for (m, n + 1)
from diagram (m, n):

1. New nodes obtained by augmentation: consider the augmentable nodes of row i
≥0 in diagram (m, n) whose string is of length j, 1< j ≤n + 1: augment each of
these nodes by adding j − 1 new nodes of the same length j, where the string that
is associated with each augmented node is the same as the string of the node it
is augmented from, except that the number in one of the first j − 1 locations is
increased by 1, without affecting the “in/out” status of the strategic customers. For
example, the node (10in1out) is augmented by two nodes, namely (20in1out) and
(11in1out). Thus, from each augmentable node in diagram (m, n) that is represented
by a string of length 1< j ≤n + 1, we get j − 1 augmented nodes. For example,
in row i of the diagram for n � 3, and for j � 2, only nodes (2i in) and (2iout)
are augmentable. Node (2i in) is augmented by node (3i in), and node (2iout) is
augmented by node (3iout).
Note that, in any row i ≥ 1, there are i regular customers after the last strategic

customer. If the first element of a string in row i of diagram (m, n) is 0, then the
second element must be “in”, as otherwise the next existing customer (regular
or “in”) will get served immediately, while throwing away all the “out” strategic
customers that were bypassed. Thus, in such a case, we complete the described
augmentation of a node by generating one additional augmented string that its first
element is 1, the second element is changed to “out”, and the remaining elements
of the string are unchanged with respect to the augmentable node of diagram (m,
n).

We should pay attention that the augmentation process may generate a duplica-
tion of augmented nodes as shown in the sequel: first, augment in diagram (m, n)
� (1, 3) the augmentable node (01in0out), which results in the augmented nodes
(11in0out) and (02in0out). Second, augment the augmentable node (10in0out), which
results in the augmented nodes (20in0out) and (11in0out). Thus, the augmented node
(11in0out) is generated twice. More specifically, with respect to diagram (1,3), each
of the augmentable nodes (10iniout), (10ini in), (10outiout) and (10outi in) for i ≥0,
is augmented by two nodes, where, for example, node (10iniout) is augmented by
(20iniout) and by (11iniout). At the end, eight nodes are augmented by the above
four nodes of diagram (1, 3). Consequently, at the end of the process, duplicated
nodes should be removed.

By applying the same process to the augmentable nodes (01iniout), (01ini in)
in diagram (1, 3), we get an additional two new augmentation nodes (02iniout)
and (02ini in) in addition to two more nodes that are duplicates, namely nodes
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(11iniout) and (11ini in) that have already been generated. In addition, the strings of
the augmentable nodes (01iniout), (01ini in) have 0 at the beginning of the string,
and therefore they can be also augmented by (11outiout) and (11outi in), but these
nodes have already been augmented by

(
10outiout

)
and

(
10outi in

)
, respectively.

Thus, the augmentation of the nodes (01iniout) and (01ini in) results in just two new
augmentation nodes.

Finally, the augmentable nodes (00in0in0in), (00in0in0out), (00in0out0in) and
(00in0out0out) generate four augmentation nodes for each of them. Three are
obtained by increasing by 1 the value of one of the first three locations. The last is
obtained by increasing the first 0 to 1, and changing the second 0 to an “out”. For
example, (00in0in0in) is augmented by (10in0in0in), (01in0in0in), (00in1in0in) and
(10out0in0in). Thus, we get 16 such augmented nodes.
In total, we have 28 augmentation nodes added to diagram (1, 3).

2. New nodes. In any diagram (m, n), m <n – 1, m ≥1, n ≥3, the longest string of
nodes is of size n + 1. Such strings consist of n + 1 zeros, where the second zero
is “in”, and the following n – 1 zeros can be in any combination of “in” or “out”.
In diagram (m, n + 1), the longest string is of length n + 2. Thus, the total number
of new nodes is 2n .

In conclusion of the presentation of the rows’ construction in diagram (1, 4) from
that of diagram (1, 3): (i) all nodes in diagram (1, 3) appear in diagram (1, 4), (ii) in
each row i ≥0, of diagram (1, 3), 28 augmentation nodes will be added. (iii) 8 new
nodes, each having a string 5 zeros, are added to the set of nodes. Thus, each row of
diagram (1, 4) consists of 54 nodes, namely 18 + 28 + 8 � 54 � 2 · 34−1 nodes.

Construction of the matrices in Q The matrices A0 and A2 in the new diagram (m, n +
1)will be similar to those corresponding to diagram (m, n). Namely, A0 and A2 are each

of order f � 2·3n : A0 � λI f × f and A2 �
[
ai, j2

]

f × f
, where ai, j2 �

{
μ i � j � 1.
0 otherwise.

.

The matrix A1 is also of order f × f , where ai, j1 �
{−(λ + μ) i � j � 1, 2.
bi, j1,1 otherwise.

. The

entries
[
bi, j1,1

]

f × f
are constructed by adding a column for each augmented node as

described above.
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